Kinetics of O6-methylguanine repair in human normal and ataxia telangiectasia cell lines and correlation of repair capacity with cellular sensitivity to methylating agents.

نویسندگان

  • Y Shiloh
  • Y Becker
چکیده

Human lymphoblastoid cell lines from normal individuals and from patients with ataxia telangiectasia were either proficient or deficient in their ability to repair the mutagenic DNA adduct O6-methylguanine that is induced by methylating carcinogens. There was no relationship between the capacity to repair O6-methylguanine and the ataxia telangiectasia phenotype. Time-course studies done following a short pulse (2 min) of alkylation with 0.5 microgram of N-[3H]methyl-N'-nitro-N-nitrosguanidine per ml revealed that the repair of O6-methylguanine in human lymphoblastoid lines proficient in this ability is a rapid process, which proceeds with a half-life of 10 to 15 min. Lymphoblastoid lines with deficient capacity to repair this DNA adduct were hypersensitive to the cytotoxic effect of the methylating carcinogens N-methyl-N'-nitro-N-nitrosoguanidine, N-methyl-N-nitrosourea, and methyl methanesulfonate, and this hypersensitivity was correlated with the relative amount of O6-methylguanine induced by each of the three chemicals. This was taken as an indication of the lethality of unrepaired O6-methylgluanine. The extent of DNA repair synthesis induced by the three carcinogens was the same in cell lines proficient and deficient in O6-methylguanine repair, indicating no major deficiency in an excision repair pathway in the hypersensitive cell lines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mismatch repair and differential sensitivity of mouse and human cells to methylating agents.

The long-patch mismatch repair pathway contributes to the cytotoxic effect of methylating agents and loss of this pathway confers tolerance to DNA methylation damage. Two methylation-tolerant mouse cell lines were identified and were shown to be defective in the MSH2 protein by in vitro mismatch repair assay. A normal copy of the human MSH2 gene, introduced by transfer of human chromosome 2, re...

متن کامل

Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea.

Cells with the mutator phenotype are tolerant to methylating damage from N-methylnitrosourea and N-methyl-N'-nitro-N-nitrosoguanine, exhibit replication repair errors, and have recently been found to be mutant in mismatch repair (MMR). However, resistance of cell lines with these defects to clinically used chemotherapeutic agents and the relationship of this resistance to expression of O6-alkyl...

متن کامل

DNA repair capacity correlates with mutagen sensitivity in lymphoblastoid cell lines.

This study describes a correlation between cellular DNA repair capacity and the frequency of mutagen-induced in vitro chromosomal breaks in selected lymphoblastoid cell lines. Two assays, host cell reactivation (HCR) assay for measuring cellular DNA repair capacity and in vitro mutagen sensitivity assay, have recently been shown to be useful biomarkers for such susceptibility. Increased in vitr...

متن کامل

Role of wild-type p53 on the antineoplastic activity of temozolomide alone or combined with inhibitors of poly(ADP-ribose) polymerase.

The DNA repair enzyme O6-alkylguanine DNA-alkyltransferase (OGAT) and a deficient mismatch repair system play a critical role in the resistance to chemotherapeutic agents that generate adducts at the O6-position of guanine. However, DNA adducts different from O6-methylguanine might be also involved in cytotoxicity induced by methylating agents. Because the loss of p53 function is generally asso...

متن کامل

ON THE EFFECTS OF ARA-A AND ARA-C ON X-RAY INDUCED DNA LESIONS IN NORMAL HUMAN AND A-T CELLS: SIMILARITIES AND DIFFERENCES.

A better understanding of the mechanism of chromosomal aberration formation could be obtained by using DNA repair inhibitors. Immortalized normal human (MRC 5 SVI) and ataxia telangiectasia ( AT 5 BIV A ) fibroblastic cell lines were treated with adenosine arabinoside (ara-A) and cytosine arabinoside (ara-C), both potent inhibitors of DNA dsb repair, alone or in combination with x-rays at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 41 12 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1981